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ABSTRACT
As high-throughput experimental techniques have become com-
mon in the area of materials research, entirely new types of
experimental strategies have appeared. The kinds of problems, the
desired outcomes, and the appropriate patterns are significantly
different from those associated with conventional experimentation.
Classical experimental design (design of experiments, DOE) strate-
gies grew up in a period of slow, laborious, error-prone experi-
mentation; a modern high-throughput laboratory can test more
materials in a week than was previously done in a year. The goal
of this Account is to identify and critically discuss some of the
strategies that are being developed and used in this new, exciting
area of research.

Introduction
Over the past 10 years, the new research technology called
“combinatorial chemistry” or “high-throughput screening”
has seen exponential growth. This technologysa set of
techniques for creating a multiplicity of compounds and
then testing them for activityshas been widely adopted
in the pharmaceutical industry over the past few years.
Virtually every major drug manufacturer is now using
these techniques as the cornerstone of its research and
development program. In the pharmaceutical industry,
“libraries” of 1000 to 1 000 000 distinct compounds are
routinely created and tested for biological activity. This is
now practical because of the convergence of low-cost
computer systems, reliable robotic systems, sophisticated
molecular modeling, statistical experimental strategies,
and database software tools.

In the last three to five years, this technology has
expanded to materials design problems outside the drug
field.1 Major chemical companies have entered this arena,
either by themselves or in concert with a company such
as Symyx,2 which specializes in new technologies for
combinatorial materials discovery. Initial work has focused
on development of robotic sample preparation, reactors,

and sensors. Some of this equipment is becoming avail-
able commercially. With the use of this equipment, we
have found that astonishing increases in the throughput
of experimentation are possible (Figure 1).

As our ability to generate large numbers of experiments
has accelerated, we have become more conscious of the
need to plan these experiments effectively. We find that
the kinds of problems, the desired outcomes, and the
appropriate strategies are significantly different from those
associated with conventional experimentation. Classical
experimental design strategies grew up in a period of slow,
laborious, error-prone experimentation. The landmark
designs developed by Fisher3 were done in agricultural
research where one experiment per year was the norm.
Classic industrial design of experiments (DOE) studies4 are
usually attempts to determine the main effects and
interactions of factors in a minimum number of experi-
ments. These are now almost trivial; the emphasis is on
the discovery of complex interactions by searching ex-
tensive chemical spaces.

Combinatorial Methods in the Scientific
Landscape
The role of combinatorial methods in the general scientific
landscape is one of scouting a wide array of possibilities
for a low-probability “lead” to commercially interesting
materials. This implies that the level of detailed scientific
understanding of that area is relatively low; otherwise,
more conventional experimentation would be more fruit-
ful. Figure 2 gives a picture of the fit of combinatorial
methods in the overall range of scientific strategies. As
the level of scientific understanding of a problem in-
creases, the quality of the equations and mathematical
models we use to represent that understanding also
increases. Consequently, the kinds of experiments we
perform to generate data also change. At the lowest level
of knowledge, where we only have a first insight into a
potentially attractive chemical “universe”, empirical strat-
egies such as combinatorial methods are most attractive.
As the system becomes better known, the number of
potentially important factors and their ranges will de-
crease. More conventional strategies such as the widely
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FIGURE 1. GE’s experience with high-throughput screening of a
catalyst system.
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used factorial and response surface designs5 will then
become more appropriate.

All of these programs in combinatorial or high-
throughput materials development use some form of a
multiphase strategy (Figure 3). A first-stage screen may
only test for one or two critical properties which are easily
and quickly measured on a microscale. This may be
followed up by a second screen, also on a microscale, to
test for other key properties or optimize the settings of
the process parameters. The best materials will be tested
on a standard laboratory scale where such parameters as
mass balance are more accurately determined. Finally, a
very few materials will become candidates for scale-up
in a pilot facility. All of these efforts occur in the larger
context of learning about the overall chemical system. The
information obtained from the combinatorial experiment

is fed back to the design process in the form of appropriate
descriptors of the experimental space. These descriptors
can be used to structure or constrain the space so the
experimental process converges more quickly. The re-
sources for all of these phases must be in balance so there
are no bottlenecks in the testing process. In addition, all
of the steps in the screening process must be in proper
balance. In a high-throughput process, you must “analyze
in a day what you make in a day”.6

The goals and strategies of combinatorial techniques
applied to materials development are quite different from
those of the pharmaceutical arena. Some of these differ-
ences are given in Table 1. The primary goal of pharma-
ceutical research is development of a single compound
that is effective as a drug. The total number of druglike
molecules is estimated to exceed 1064 possibilities. This
leads to a focus of combinatorial drug strategy: “which
small portion of all accessible compounds should be made
to have the greatest chance of progressing the drug design
project?” 7 The most common current strategy is one of
diversity: selecting a subset of compounds which repre-
sent the “chemical space” under investigation. This, in
turn, requires metrics that describe the chemical space;
these are typically derived from properties which can
easily be calculated from the structure of the compounds
being studied.8

In materials development, the primary goal is discovery
of systems that meet a number of physical, chemical, and
structural requirements. These systems may be catalysts,
polymers, phosphors, electronic materials, pigments, or
coatings.9 Such systems are likely to involve several
molecular species and process variables. An industrially
interesting materials development problem will typically
have been the subject of years (or decades!) of conven-
tional research; in that work, all the primary effects and
simple interactions of the various parameters of the
system will have been investigated. If something new is
to be found in the system, it will be from the synergistic
effects of three or more parameters working together
(Figure 4).10 The probability of finding such three-way or
higher interactions is too low for them to be likely to be
found by conventional means. Only high-throughput
experimentation will be able to find them.

Even with high-throughput methodology, however, the
combinatorial explosion of possibilities represents a daunt-
ing task. For example, in a relatively simple single-phase
homogeneous catalyst system, the number of possible
experiments quickly rises into the millions (Table 2). If
we add the complications of multiple phases, as would
occur in a heterogeneous catalyst, the possibilities grow
even more numerous.

FIGURE 2. As scientific understanding increases, the mathematical
models (black) used to describe a phenomenon and the experimental
techniques (gray) used to sample it become more sophisticated.

FIGURE 3. High-throughput methodologies require a highly struc-
tured approach to achieve the productivity improvements advertised.
Multistage screening must be integrated with laboratory- and pilot-
scale testing.

Table 1.

pharmaceutical materials development

• focused on chemical synthesis as primary • synthesis, mixtures, and process variables
• emphasis on diversity within known metrics • emphasis on broad coverage and synergy
• experimental space metrics known • experimental space metrics not known
• easy sample evaluation on nanogram level • sample evaluation difficult and individual for each system
• challenge is designing diverse libraries from

very large numbers (.106) of molecules
• challenge is finding high order synergies of qualitative and

mixture/process variables
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Within this complex area of research, I would suggest
a few reasonable goals for the experimental strategist. We
need

• strategies to address very large, multidimensional
experimental spaces

• a taxonomy of the varieties of experimental spaces
• estimates of what is discoverable...and what is not
• decision rules for deciding when to stop studying a

space
• predictive methods for generating fruitful experi-

ments.
The focus in this work will be on the first three of these

points.

Experimental Strategy in Combinatorial Organic
Synthesis
Work in the pharmaceutical industries has led to consid-
erable discussion of experimental strategy in this area.11-19

These articles have mostly focused on what can broadly
be called “diversity strategies”,18 in which

• structural descriptors are calculated for each com-
pound in a potential library;

• similarity coefficients are calculated between com-
pound pairs; and

• compounds are selected for libraries using cluster-
based, dissimilarity-based, or partition-based methods.

These methodologies have often been compared against
pure random screening.15 The advantages and disadvan-
tages of each method are still a subject of active debate.

The crucial advantage that combinatorial organic syn-
thesis has over materials development is its focus on single
compounds as targets. From these target molecules,

descriptors can be calculated and used as metrics in a
quantitative experimental space. This space is quite large,
ranging from 19 dimensions16 to thousands, but it is
possible to generate rational diversity within that space
using the methods mentioned above.

Approaches to Experimental Strategy in
Materials Development
High-Speed Array Strategies. The properties of functional
materials such as phosphors, catalysts, and electronic
components arise from complex interactions of their
formulation and processing. The development of descrip-
tors in these areas is in its infancy. For that reason,
descriptor-based experimental strategies in these areas
have tended to be limited. “There is no approach that will
have the generality of the combinatorial methods currently
used for synthesis and screening of biologically active
molecules.” 20 In fact, many “combinatorial” materials
development programs are best characterized as array
methods for rapid performance of conventional experi-
ments. In the following section, I will discuss some of the
more common approaches in the literature from an
experimental strategy viewpoint.

1. Gradient Arrays. A common approach in solid-state
materials studies is examination of a ternary (or higher)
materials gradient.21 This can be done by using continuous
or point techniques. In “continuous composition spread”,22

a single film with a ternary composition spread was
generated on a 63- × 66-mm substrate in one step, and
the electronic properties were measured at ∼4000 points.
It found an excellent dielectric Zr0.15Sn0.3Ti 0.55O2-δ. The
experimental design and strategy issues in this type of
experiment are limited to the choice of experimental
system and the fineness of the test gradient. This has been
most developed in the study of electronic thin-film
materials. It is particularly suited for identification of
narrow phase regions with suitable properties. It is de-
pendent on very fast, high-resolution methods of property
determination.

A more common theme is a ternary gradient studied
at regular intervals. Intervals such as 0-100% by 10% steps
or 0-1% by 0.1% steps are convenient; these generate 66-
point triangular arrays (Figure 5). For example:

• The Pt-Pd-In system for cyclohexane dehydrogena-
tion catalysis was studied in the 0-1% range at 0.1%
intervals.23

FIGURE 4. Highly active ternary catalyst bounded by low-activity
binaries.

Table 2. Possible Numbers of Experiments in a
Representative Situation

type levels

formulation factors
primary catalyst qualitative 1
inorganic cocatalyst qualitative 20
amount of cocatalyst quantitative 3
organic ligand qualitative 20
amount of ligand quantitative 3
active anion qualitative 10
amount of anion quantitative 3

process factors
reaction time quantitative 3
reaction temperature quantitative 3
reaction pressure quantitative 3

total number of potential runs 2 916 000

FIGURE 5. Ternary gradient in 10% steps.
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• The Rh-Pd-Pt system for CO oxidation was studied
over the 0-100% range using 15 steps.24

The technique can be extended to more complex
combinations. A quaternary phase diagram was studied
in the Pt/Ru/Os/Ir system for methanol fuel cell catalysis.10

Typically, the response is a visual signal (either directly
or indirectly), and the analysis of the data has often been
done by visual inspection.

In these designs, the overall shape is determined, but
there are still important strategy decisions to be made:

• What grid density should be used? Typically these
arrays are designed to locate a relatively small region of
phase space in which a phase with advantageous proper-
ties is located. The grid density will determine the smallest
phase space that can be observed. The tradeoff, of course,
is that halving the distance between levels almost qua-
druples the number of samples.

• Should the grid have uniform spacing? In solid-state
chemistry, it is common for a component to have its most
important effect as a dopant at very small concentrations.
Uniform spacing may oversample the center of the space
while missing the potential dopant regions at the edge. A
logarithmic spacing (e.g., 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50,
100%) which places more points in the low-concentration
region may be advantageous.

• How do we decide whether the quality of an array is
good enough to make it usable? An advantage of gradient
arrays (unlike quaternary mask arrays) is that there is a
direct geometric concentration gradient, so that trends can
be located visually or with curve-fitting techniques. Quality
criteria must be set for decisions based on lack of trends
or randomness.

• How will we detect a “hit” in the array? A “pick-the-
winner” strategy is the simplest but also most likely to be
fooled by noise in the data. For screening purposes, entire
areas of high-response compositions can be selected and
made into “focussed” arrays.

2. Quaternary Mask Arrays. These designs were de-
veloped to exploit the unique features of the inorganic
chemistry of metal oxides. A large number of scientifically
and commercially important materials such as phosphors,
scintillators,25 light-emitting diodes, and superconductors
are composed of a metal oxide host lattice doped with
small amounts of other metal atoms as activators (Table
3).

These structures can be summarized as AmBnOx:
dopant for two host atoms; AmBnCoOx:dopant for three,
and so on. The metal atoms must be chosen for the A, B,
and C positions with size and charge appropriate to the
crystal structure being built. When thin layers of metal
oxides are deposited onto a substrate and carefully an-
nealed, the crystal structures form spontaneously.

Since there can be many choices for metals in each of
the A, B, C, and dopant positions, the quaternary mask
system26 (Figure 6) was designed to enable free and flexible
choices in each position. In its current state of develop-
ment, 1024 distinct samples can be generated in just 24
sputtering operations using six masks. Each mask can be
used four times by 90° rotations. This allows four choices
for each host position and each dopant (Figure 7).

The quaternary mask system has important advantages
over its predecessor, the binary mask system.27 Binary
masks do not allow efficient separation of metals by
function, so a large fraction of the samples made have
compositions which do not form the correct structure. In
all these masking systems, an additional degree of com-
positional freedom can be added by gradually moving the
mask or a shutter during the deposition procedure.28

3. High-Speed Versions of Conventional Experimental
Designs. These designs are frequently used in the second
stage of high-throughput screening, when a “hit” has been
located. Since the cost of experimental points is relatively
low, these can be quite high resolution designs such as
full factorials, central composite designs,5 and special
cubic or cubic mixture designs.29 The classic experimental
design issue which frequently crops up in these experi-
ments is nesting. It is generally quite easy to make an array
of compositions in one of the standard designs; however,
these arrays are usually subjected to physical treatments
(heating, cooling, gas pressure, etc.) as units. The com-
position variables are therefore nested30 within the physi-
cal treatment variables, and appropriate designs and
analyses must be used.31-33

Table 3. Representative Metal Oxide Materials
(Host:Activator)

host metal
atoms phosphors

super-
conductors

magneto-
resistance

1 Y2O3:Eu3+ Fe2O4:Pd
2 Y3Al5O12:Ce3+ La2CuO4 La0.67Ca0.33MnO3
3 BaMgAl10O17:Eu2+ YBa2Cu3O7

FIGURE 6. Six fractal quaternary masks used in deposition studies.

FIGURE 7. The quaternary masking system uses six fractal masks,
each of which can be rotated 90° to allow four choices of material
at each level.

Combinatorial and High-Throughput Materials Development Cawse

216 ACCOUNTS OF CHEMICAL RESEARCH / VOL. 34, NO. 3, 2001



True Combinatorial Design Strategies. There are two
possible interpretations of the term “combinatorial” in
experimental situations. The one used in the pharmaceu-
tical arena is in the sense of actual combinations of
compounds in the course of experimentation. This is most
obvious in the now classic “split-and-pool” technique, in
which polymer-bound compounds are split into separate
vessels where each is treated with a different reagent and
then recombined into a common pool. Repetition of this
process yields a mixture of mn compounds, where m is
the number of separate vessels at each step and n is the
number of steps. This has also been used in some catalyst
development programs where the catalyst is a single
organic speciessanalogous to an enzyme.34

A second meaning, which I emphasize here, is the use
of combinatorial mathematics to calculate and sample the
possible combinations of parameters in a materials sys-
tem. If, as noted above, the potential groundbreaking
material innovations of the next generation will be found
in high-level synergies, it makes sense to use appropriate
mathematical tools to locate them.

The use of these mathematical combinatorial methods
will be most prevalent in the early stages of a project,
before the investigators have been able to develop ap-
propriate descriptors. In such a situation, we only have a
set of potentially important factors, each of which may
have many levels. Several strategies have been used so
far in searching for potential valuable synergies.

1. “Representational” Strategy.35 In this approach, a
molecular catalyst containing three variable substituents
(Figure 8) was to be optimized. There were 20 possible
substituents in each region, so the total number of
possibilities was 203 ) 8000. Rather than test all 8000, the
20 possible variations in the first variable region were
tested and the best selected. It was then fixed and the 20
possibilities for the second region were tested, followed
by fixing the best and testing the third region. This is
illustrated in Figure 9.

While this did find a substantially improved catalyst
using only 60 of 8000 possible experiments, it is also a
very limited strategy. It is entirely analogous to the “one-
variable-at-a-time” strategies in conventional experimen-
tation.5 If there are any interactions between the three
variable regions, they will not be found.

2. Index Library Strategy.36 This method was used to
find an optimal metal-ligand catalyst combination. Given
10 ligands and 10 metals, 100 combinations are possible.
Instead, the 10 ligands were mixed together, and the
mixture was tested, one at a time, with each of the metals.
Similarly, the 10 metals were mixed together, and the
mixture was tested with each of the ligands. The best

results from the two sets of experiments then indicated
the best metal-ligand pair (Figure 10).

This, too, is a very limited strategy. It can only be used
with relatively small metal-ligand or similar systems. If
there are too many of either one, the concentration of the
active species will be diluted to the point where it will
not appear above the noise. Cross reactions or competi-
tion in which multiple different ligands bond to a single
metal may be possible. Finally, these kinds of systems will
frequently contain catalyst poisons as well as catalysts.
This will severely impact the usefulness of the method.

3. All Two-Way Combinations Strategy.37 This method
was used to find optimal catalyst systems in a situation
where it had been found that combinations of metal
cocatalysts were advantageous. Nineteen possible metals
were identified, and all possible pairs of catalysts were
tried (Figure 11). Eleven systems were identified as having
possible synergy and were passed to secondary testing.

This strategy also has its limitations. Only two-way
combinations were tested here. If three-way combinations
were potentially interesting, the number of tests jumped
to (19 × 18 × 17)/(1 × 2 × 3) ) 969, which was too many
for the budget. Also, the metals were only tested at a single

FIGURE 8. Scaffold for synthesis of enantioselective catalyst using
representational catalyst strategy. R1, R2, and R3 are variable
substituents.

FIGURE 9. “Representational” catalyst search strategy.

FIGURE 10. “Index library” catalyst search strategy.
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concentration level. If there had been an effect of relative
concentrations, this, too, would be missed. Assessing the
effect of concentrations on each metal combination would
at least triple the number of tests.

Idealized Strategies. If we truly have no information
on chemical possibilities, then the most effective strategy
will be exhaustive enumeration of all n-way combinations
of the factors. This leads to the first question: which of
those combinations can be exhaustively studied in a
practical experimental situation?

To investigate this question, we ran a series of simula-
tions using Crystal Ball38 software. The following example
illustrates the results we have found:

Using this simulation, 250-1000 instances were calcu-
lated. The results are shown in Figure 12.

From Figure 12 we can draw some immediate conclu-
sions. First, the total numbers of possible combinations
in even as simple a system as this quickly rises into the
hundreds of thousands or millions. It will not be possible
to exhaustively test all the possibilities. Second, the
number of two-way combinations stays in the low thou-
sands and is therefore experimentally accessible with high-
throughput technology. Third, while the four-way and five-
way combinations rapidly increase to the hundreds of
thousands and are relatively impractical, the three-way

combinations, which remain in the low tens of thousands,
appear accessible.

We gain further encouragement in this area when we
note that the critical parameter is the number of experi-
mental runs that must be performed, not the absolute
number of combinations. In a five-factor combinatorial
experiment, a single experimental run observes

Therefore, the minimum required number of runs to
observe all n-way combinations is much less than the total
number of those combinations. In general, the theoretical
minimum number of runs to observe all n-way combina-
tions is the product of the number of levels of the n factors
with the largest numbers of levels. Thus, the minimum
runs

where li,max is the number of levels of the factor with the
largest number of levels, lj,max is the second largest, etc.
The actual minimum may be slightly larger than the
theoretical minimum in more irregular chemical spaces.

If we apply this calculation to the numbers of combi-
nations found above, we discover that the number of runs
(Figure 13) required to exhaustively study all possible two-
way combinations is actually relatively small. Even three-
way combinations become quite tractable. The figure also
shows that in the three-way case there is a substantial
advantage in working with experimental spaces with
relatively equal number of levels.

Strategies for Observing Two-Way Combinations.
Two-way combinations are relatively easy to observe, even
in rather complex systems. The mathematical description
for an array which exhaustively samples all two-way
combinations of a set is an “orthogonal array of strength
2 and index 1”.39 The classical Latin square design is such
an array which efficiently samples all two-way combina-
tions in a symmetrical system, with all factors having the
same number of levels (Figure 14).

Latin squares can be generalized to less symmetrical
systems such as Youden squares, and orthogonal arrays
of strength 2 are relatively easy to construct.

Strategies for Observing Three-Way Combinations.
Three-way combinations are less easy to exhaustively
observe. Although a “Latin cube” is possible for perfectly
symmetrical systems, it is not generalizable. Orthogonal
arrays of strength 3 and index 1, which would be required
for these systems, are relatively rare and are quite difficult

FIGURE 11. Full combinatorial design for two metals. The shading
in the design indicates the blocking pattern used in the experiments.

FIGURE 12. Total number of possible two-, three-, four-, and five-
way combinations in a five-factor experiment with 2-20 levels per
factor.

Basic Parameters

• No chemical knowledge (descriptors) assumed

• Factors are independent (no nesting)

• Five factors, each with 2-20 levels

• Moderately high throughput experimentation;

hundreds to thousands of runs feasible

• Experimental error negligible

• 10 two-way combinations

(12, 13, 14, 15, 23, 24, 25, 34, 35, 45)

• 10 three-way combinations

(123, 124, 125, 134, 135, 145, 234, 235, 245, 345)

• 5 four-way combinations

(1234, 1235, 1245, 1345, 2345)

) li,max lj,max (two-way)

) li,max lj,max lk,max (three-way)
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to construct.40 Therefore, algorithmic approaches are
required. We have examined three strategies in this area:

1. Random Runs. The use of randomly chosen runs in
a combinatorial study was investigated using simulation.
The basic assumptions of the study were

In each iteration of this simulation, a set of levels for
each factor was randomly selected, and the list of all
possible three-factor combinations was generated. Sets of
10, 20, 40, ... runs were then randomly generated and the
resulting combinations checked off the list. The results
of this simulation are given in Figure 15. It shows that
random runs can be a relatively efficient method of
sampling the three-way combinations in a fairly complex
experiment. Approximately 80% of the combinations have
been sampled by the time the theoretical minimum
number of runs have been completed. Exhaustive sam-
pling, however, is less successful; it requires about three
times the theoretical minimum to sample 99% of the total
combinations.

2. Genetic Algorithms. Genetic algorithms41 (GAs) are
a popular method of searching for optima in fields varying
as widely as truck manufacturing and drug design. They
have the advantage of being assumption free; they will
work if there is any underlying structure to the experi-
mental spaceseven if we cannot figure it out. The process
of experimentation using genetic algorithms is straight-
forward:

• Selection of an experimental space consisting of
compositional and process parameters which are com-
bined to form a “genetic code” for producing the desired
materials.

• Initialization of a first generation of materials. This is
usually done by random selection, but it can be seeded
with known “good” runs or constrained by prior knowl-
edge.

• Preparation and testing of the materials from the first
generation.

• Prioritizing the genetic codes from the first generation
as “parents” for the next generation on the basis of the
testing responses.

• Creation of the next generation from those parents
by applying the evolutionary operators of crossover,
qualitative mutation, and quantitative mutation. The
critical design decisions in this methodology bear on the
tradeoff between the rate of convergence on the best
material vs the certainty of convergence. This is sum-
marized in Table 4.42 The principal disadvantage of GA

FIGURE 13. Minimum number of runs necessary to sample all two-way and three-way combinations in a five-factor design with 2-20 levels
per factor.

FIGURE 14. A Latin square observes all 64 two-way combinations
of three factors with four levels each using 16 runs.

• Random Runs

• Genetic Algorithms

• Computer-Generated Test Plans

• No chemical knowledge assumed

• Independent factors

• Six factors with 2-6 levels each or

eight factors with 2-8 levels each

FIGURE 15. Three-way combinations observed with random runs.
The results of each simulation are reported relative to the theoretical
minimum runs for each combination of factors and levels. Each
simulation was run at a given factor/level combination 10 times; the
error bars show the range of the data.
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strategies is the number of generations required for
convergence. Most GA optimizations are run on computer
models, so the cost and time required for running dozens
to hundreds of generations are low. When a generational
cycle requires a full process of running and analyzing an
experiment, the cost may be too high. In a representative
experiment run for three generations in our laboratory
(Figure 16), there was a clear population shift toward
higher activity, but the rate was too slow to be practical.
In other (bio)chemical systems where GAs have been used,
convergence or leveling of improvement has occurred in
10-20 generations.43,44

3. Computer-Generated Test Plans. With a computer-
aided algorithm, it is possible to exhaustively enumerate
all possible n-way combinations. This can be followed by
selection of an appropriate subset of runs that will sample
all n-way combinations. Fortunately, this problem has
already been solved in another contextssoftware test
generation. Proper testing of software requires examina-
tion of combinations of inputs to test for untoward
interactions. For example, an automatic telephone system
might require examination of the possibilities shown in
Table 5. There are 81 possible scenarios in this situation,
which contain 54 possible two-way combinations. All of
these combinations can be sampled in only nine experi-
mental runs (Table 6).

A Web-based software service45 has now been com-
mercialized to generate such test plans. We have found it
to be reasonably user-friendly and capable of accom-
modating complex experiments and constraints. For
example, a catalyst system consisting of

contained 6075 possible three-way combinations. The
theoretical minimum number of runs to sample all three-
way combinations is 150; the algorithm was able to find
a 167-run plan that actually sampled them all.

The principal limitations of these test plans are the
following:

• They are highly dependent on the significant interac-
tion effects being synergistic rather than antagonistic.
Even a modest poisoning effect can obliterate a large
portion of the design.

• They require that the desired high-order interaction
effect be relatively large, while the main effects and low-
order interactions remain small. Otherwise, the desired
observation will be drowned in the noise of the additive
lower-order effects.

• The lack of redundancy requires that the quality of
the experimental system be very high.

If these assumptions are met, a simple histogram or
normal probability plot of the response data will identify
the runs containing strongly positive interactions. If there
is more than one such run, the active factors will be
indicated by simple comparison. If there is only one, a
followup design can be run with only two levels/factor to
home in on the active factors. A resolution IV fractional
factorial design (32 runs in the catalyst case above) will
cover all the possible three-way combinations.46

Conclusion
These methods of high-throughput materials development
are still in a rapid state of development, and experimental
strategies appropriate to each methodology are also
appearing rapidly. This Account does not delve into the
full complexities of statistical analysis which may be
required for some of these approaches; it is a very good
idea to have an experienced statistician as a full member

Table 4. Genetic Algorithm Design Factors

factors promoting high rate of convergence factors promoting certainty of convergence

• small population • large population
• fitness-proportional selection (high reproduction rate

of the best compositions)
• all materials participate in the reproduction process,

independently of performance
• quantitative mutation the prevalent evolutionary

operator
• crossover and qualitative mutation the primary evolutionary

operators

FIGURE 16. Three generations of a population of catalysts with 55
formulations per generation.

Table 5. Possible States of Automatic Telephone
Software

call type billing access status

local caller loop success
long distance collect ISDN busy
international 800 PBX blocked

Table 6. Nine-Run Design That Tests All 54 Two-Way
Combinations

call type billing access status

1 local collect PBX busy
2 long distance 800 loop busy
3 international caller ISDN busy
4 local 800 ISDN blocked
5 long distance caller PBX blocked
6 international collect loop blocked
7 local caller loop success
8 long distance collect ISDN success
9 international 800 PBX success

• Primary catalyst: 4 possibilities

• Metal cocatalyst: 2 × 5 possibilities @
2 concentrations

• Cocatalyst ligand: 6 possibilities

• Nonmetal cocatalyst: 3 possibilities @
3 concentrations

• Process factors: 3 @ 2 levels

Combinatorial and High-Throughput Materials Development Cawse

220 ACCOUNTS OF CHEMICAL RESEARCH / VOL. 34, NO. 3, 2001



of the team. Finally, the quality issues inherent in opera-
tion of an automated, high-throughput experimental
system are substantial and will be discussed in a subse-
quent article.

The author thanks the GE Corporate R&D Combinatorial
Chemistry program, led by Terry Leib, and the Applied Statistics
Program, led by Gerald Hahn, for their contributions which helped
make this review possible. Special thanks go to Charlie Hendrix
(South Charleston, WV) for many fruitful discussions on the
strategy of experimentation.

References
(1) Liu, D. R.; Schultz, P. G. Generating New Molecular Function: A

Lesson From Nature. Angew. Chem., Int. Ed. 1999, 38, 36-54.
(2) Symyx Technologies, http://www.symyx.com (accessed Nov 2,

2000).
(3) Fisher, R. A. The Design of Experiments; Oliver and Boyd:

Edinburg, 1935.
(4) Daniel, C. Applications of Statistics to Industrial Experimentation;

John Wiley: New York, 1976.
(5) Box, G. E. P.; Hunter, W. G.; Hunter, J. S. Statistics for Experi-

menters; John Wiley: New York, 1978.
(6) Cohan, P. Achieving Strategic Change through Innovation. Pre-

sented at Combi 2000 (Knowledge Foundation), San Diego, CA,
Jan 23-25, 2000.

(7) Brown, R. D.; Newsam, J. M. The importance of model behavior.
Chem. Ind. (London) 1998, 5 Oct, 785-788.

(8) Molecular Simulations Inc. Cerius2 environment, http://www.
msi.com/materials/cerius2/index.html (accessed Nov 2, 2000).

(9) Caruana, C. M. Combinatorial Chemistry Promises Better Catalysts
and Materials. Chem. Eng. Prog. 1998, 94, 11-14.

(10) Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Saran-
gapani, S.; Smotkin, E. S.; Mallouk, T. E. Combinatorial Electro-
chemistry: A Highly Parallel, Optical Screening Method for
Discovery of Better Electrocatalysts. Science 1998, 280, 1735-
1737.

(11) Gordon, E. M.; Gallop, M. A.; Patel, D. V. Strategy and Tactics in
Combinatorial Organic Synthesis. Applications to Drug Discovery.
Acc. Chem. Res. 1996, 29, 144-154.

(12) Young, S. S.; Sheffield, C. F.; Farmen, M. Optimum Utilization of
a Compound Collection or Chemical Library for Drug Discovery.
J. Chem. Inf. Comput. Sci. 1997, 37, 892-899.

(13) Hassan, M.; Bielawski, J. P.; Hempel, J. C.; Walden, M. Optimiza-
tion and visualization of molecular diversity of combinatorial
libraries. Mol. Diversity 1996, 2, 64-74.

(14) Clark, R. D.; Cramer, R. D. Taming the Combinatorial Centipede.
CHEMTECH 1997, 1997, 24-31.

(15) Young, S. S.; Farmen, M.; Rusinko, A., III. Random Versus Rational
Which is Better for General Compound Screening? http://www.
netsci.org/Science/Screening/feature09.html (accessed Nov 2,
2000).

(16) Martin, E. J.; Critchlow, R. E. Beyond Mere Diversity: Tailoring
Combinatorial Libraries for Drug Discovery. J. Comb. Chem. 1999,
1, 32-45.

(17) Reynolds, C. H.; Druker, R.; Pfahler, L. Lead Discovery Using
Stochastic Cluster Analysis (SCA): A New Method for Clustering
Structurally Similar Compounds. J. Chem. Inf. Comput. Sci. 1998,
38, 305-312.

(18) Warr, W. A. Combinatorial Chemistry and Molecular Diversity.
An Overview. J. Chem. Inf. Comput. Sci. 1997, 37, 134-140.

(19) Agrafiotis, D. K.; Myslik, J. C.; Salemme, F. R. Advances in
diversity profiling and combinatorial series design. Mol. Diversity
1999, 4, 1-22.

(20) Burgess, K.; Moye-Sherman, D. A.; Porte, M. In Molecular
Diversity and Combinatorial Chemistry; Chaiken, I. M., Chanda,
K. D., Eds.; American Chemical Society: Washington, DC, 1996;
pp 128-136.

(21) Hanak, J. J. The “Multi-Sample Concept” in Materials Research:
Synthesis, Compositional Analysis and Testing of Entire Multi-
component Systems. J. Mater. Sci 1970, 5, 964-971.

(22) Van Dover, R. B.; Schneemeyer, L. F.; Fleming, R. M. Discovery
of a useful thin-film dielectric using a composition-spread ap-
proach. Nature (London) 1998, 392, 162-164.

(23) Senkan, S.; Krantz, K.; Oztrurk, S.; Zengin, V.; Onal, I. High-
Throughput Testing of Heterogeneous Catalyst Libraries Using
Array Microreactors and Mass Spectrometry. Angew. Chem., Int.
Ed. 1999, 38, 2794-2799.

(24) Cong, P.; Doolen, R. D.; Fan, Q.; Giaquinta, D. M.; Guan, S.;
McFarland, E. W.; Poojary, D. M.; Self, K.; Turner, H. W.; Weinberg,
H. High-Throughput Synthesis and Screening of Combinatorial
Heterogeneous Catalyst Libraries. Angew. Chem., Int. Ed. 1999,
38, 484-488.

(25) Sun, T. X. Combinatorial Search for Advanced Luminescent
Materials. Biotechnol. Bioeng. 1999, 61, 193-201.

(26) Wang, J.; Yoo, Y.; Gao, C.; Takeuchi, I. S., X.; Chang, H.; Xiang,
X.-D.; Schultz, P. G. Identification of a Blue Photoluminescent
Composite Material from a Combinatorial Library. Science 1998,
279, 1712-1714.

(27) Xiang, X.-D.; Sun, X.; Briceno, G.; Lou, Y.; Wang, K.-A.; Chang,
H.; Wallace-Freedman, W. G.; Chen, S.-W.; Schultz, P. G. A
Combinatorial Approach to Materials Discovery. Science 1995,
268, 1738-1740.

(28) Schmitz, C.; Posch, P.; Thelakkat, M.; Schmidt, H.-W. Efficient
screening of electron transport material in multilayer organic light
emitting diodes by combinatorial methods. Phys. Chem. Chem.
Phys. 1999, 1, 1777-1781.

(29) Cornell, J. A. Experiments With Mixtures: Designs, Models, and
the Analysis of Mixture Data, 2nd ed.; John Wiley and Sons: New
York, 1990.

(30) Montgomery, D. C. In Design and Analysis of Experiments; John
Wiley & Sons: New York, 1984; pp 357ff.

(31) Milliken, G. A.; Johnson, D. E. Analysis of Messy Data; Van
Nostrand Reinhold: New York, 1984.

(32) Hendrix, C. NESTED97; South Charleston, WV, 1997.
(33) Bisgaard, S. The Design and Analysis of 2∧(k-p) x 2∧(q-r) Split

Plot Experiments. J. Qual. Tech. 2000, 32, 39-56.
(34) Crabtree, R. H. Combinatorial and rapid screening approaches

to homogeneous catalyst discovery and optimization. Chem
Commun. 1999, 1611-1616.

(35) Shimuzu, K. D.; Snapper, M. L.; Hoveyda, A. H. High-Throughput
Strategies for the Discovery of Catalysts. Chem. Eur. J. 1998, 4,
1885-1889.

(36) Kreuger, C. A.; Snapper, M. L.; Hoveyda, A. H. In Abstracts of
Papers, 216th National Meeting of the American Chemical Soci-
ety, Boston, MA, Fall 1998; American Chemical Society: Wash-
ington, DC, 1998; p 232.

(37) Cawse, J. N.; Doganaksoy, N.; Hansen, C.; Mattheyses, R.;
Pisupati, C.; Repoff, T.; Stanard, C.; Tucker, W. Presented at the
ASA Quality & Productivity Research Conference, Schenectady,
NY, 1998.

(38) Decisioneering Advanced Analytic Tools, http://www.
decisioneering.com/ (acessed Nov 2, 2000).

(39) Colbourn, C. J.; Dinitz, J. H. In The CRC Handbook of Combina-
torial Designs; Colbourn, C. J., Dinitz, J. H., Eds.; CRC Press: New
York, 1996; pp 97ff.

(40) Kreher, D. R., Michigan Technological University, Houghton, MI,
personal communication, 1998.

(41) Goldberg, D. E. Genetic Algorithms in Search, Optimization, and
Machine Learning; Addison-Wesley: New York, 1989.

(42) Baerns, M. Presented at Combi 2000 (Knowledge Foundation),
San Diego, CA, 2000.

(43) Weber, L.; Wallbaum, S.; Broger, C.; Gubernator, K. Optimization
of the Biological Activity of Combinatorial Compound Libraries
by a Genetic Algorithm. Angew. Chem., Int Ed. 1995, 34, 2280-
2282.

(44) Sheridan, R. P.; Kearsley, S. K. Using a Genetic Algorithm to
Suggest Combinatorial Libraries. J. Chem. Inf. Comput. Sci. 1994,
35, 310-320.

(45) AETG Web, http://aetgweb.argreenhouse.com/ (accessed Nov 2,
2000).

(46) Street, D. J. In The CRD Handbook of Combinatorial Designs;
Colbourn, C. J., Dinitz, J. H., Eds.; CRD Press: New York, 1996; p
339.

AR000117S

Combinatorial and High-Throughput Materials Development Cawse

VOL. 34, NO. 3, 2001 / ACCOUNTS OF CHEMICAL RESEARCH 221


